[外絮] NBA全新推出的灌籃分數(其實有點不新了)

看板NBA (美國籃球)作者 (EZ78)時間4小時前 (2024/11/15 16:22), 3小時前編輯推噓22(23113)
留言37則, 30人參與, 2小時前最新討論串1/1
https://www.nba.com/news/what-is-the-dunk-score https://www.nba.com/news/a-deep-dive-into-how-nba-dunk-score-is-calculated https://reurl.cc/zpgq1p https://reurl.cc/A6nMrE NBA.com在10月底推出了全新的追蹤數據--Dunk Score 這個數據綜合了25個球員追蹤的原始數據來統計出灌籃的難易度 而官網也會在數據頁面的右上角每天更新灌籃分數最高的幾球 https://reurl.cc/b34Wvr 這個是今天最高的Jaden Hardy--101.7分 而上次Jalen Green灌在Cade Cunningham頭上的那球則是本季第二高的111.3分 至於NBA用了哪些數據來當作灌籃的標準呢? 以下開始翻全文: Dunks provide some of the most electrifying moments in basketball. Whether it ’s a gravity-defying leap, an explosive finish through contact, or a windmill slam that ignites the crowd, there’s nothing quite like a dunk to get fans out of their seats. But what if there was a way to quantify the magic behind each slam? With the help of advanced optical tracking systems and cutting-edge AI, that’s exactly what the NBA Dunk Score sets out to do. The NBA Dunk Score breaks down every dunk using data-driven metrics resulting in an objective score based on technical excellence, athleticism and difficulty — without any bias derived from game context or the players involved. Ready to dive into how this works? Let’s explore the NBA Dunk Score. 灌籃提供了籃球最具動能的一些時刻。無論是無視重力的飛、呼嘯過對抗的終結還是點燃 群眾的大車輪灌籃,沒有任何東西可以比灌籃能讓粉絲們離開他們的座位歡呼。但我們要 怎麼數據化灌籃背後的魔法呢?在一些進階追蹤系統的幫助與劃時代的AI,這就是NBA灌籃 分數準備要做到的事情。 NBA灌籃分數會利用以數據為基底的標準來分析每一個灌籃。而這結果將會是一個基於技術 高度、體能與難度所總結出來的客觀分數--而這些不會因為灌籃參與的球員或是比賽的情 況而有所偏差。 準備好要深入探討這如何運作了嗎?讓我們一起探索NBA灌籃分數。 Data Overview The foundation of any model is the data that goes into it. That’s where the NBA’s optical player tracking systems come in. Using advanced 3D pose detection models, these systems track 29 points on each player’s body with sub-centimeter accuracy, generating 3D coordinates for every movement. All of this is captured 60 times per second. 所有模型的基礎都是他被餵進去的資料。這也是NBA的球員光學追蹤系統參與的地方。(還 記得NBA前幾年新增了鷹眼系統? #1a2VrOV6 (NBA) 這個可能就是應用之一)運用3D姿勢偵 測的模型,這些系統追蹤每一位球員身上29個點直至公分以下的準確度並藉此產生每一個 動作的3D座標。而這些東西每秒鐘會捕捉60次。 Dunk Score Overview The NBA Dunk Score is a live model that analyzes over 25 different attributes of a dunk—each calculated directly from the player tracking data—to assign an objective score. The system is entirely data-driven, meaning the score is independent of external factors like the dunker’s identity, the game’s score, or whether it’s a preseason or playoff game. This makes the Dunk Score a true “technical score,” focused solely on the execution of the dunk itself. NBA灌籃分數是個分析灌籃現時模型。他分析一個灌籃超過25個不同的元素,而這些元素都 是完全自球員追蹤數據產生,並最終給出一個客觀的分數。這個系統完全是數據驅動的, 這也意味著這些分數獨立於灌籃者的身分、分數或者是比賽性質--無論這場比賽是個熱身 賽還是季後賽。這使得灌籃分數完全是個"技術分數",只專注於灌籃的執行本身。 The Dunk Score is broken down into four distinct subscores: Jump, Power, Style, and Defensive Contest —each highlighting a different aspect of the dunk. The Jump subscore is all about the athlete’s verticality and explosiveness in the air. Power captures the raw force of the dunk. Style measures dunk flashiness, quantifying how much creativity the player adds to their dunk. Finally, the Defensive Contest subscore adds context by evaluating how much defensive pressure the dunker faced. Together, these four subscores provide a deeper, more nuanced breakdown of every dunk. Rather than just focusing on the overall score, they give us insight into the different dimensions of the play. 灌籃分數可以在往下細分成4個分開的小分:跳躍、力量、風格與防守者挑戰--這其中每一 項分別會關注灌籃中不同的面相。跳躍分數全是關於運動員跳得多高以及他在空中的爆發 力。力量捕捉了灌籃的原始力量。風格評估了灌籃的華麗程度並數據化球員在灌籃中增添 的創意。最後,防守者挑戰則提供灌籃的背景,評估灌籃者所面對道的防守壓力。而這4個 全部加起來共同為每次灌籃提供了更深入且細膩的解析。不僅僅著眼於總分,更讓我們深 入了解這項動作的不同面相。 Base Features Overview Let’s take a closer look at the key attributes that factor into the Dunk Score. These metrics, pulled directly from the 3D pose data via a real-time processing pipeline, are the building blocks of the model. Some features carry more weight than others, but each one helps break down the technical aspects of a dunk: 以下是一些灌籃分數的主要屬性詳細解析。這些都是直接提取自透過實時處理管道蒐集的 3D姿勢數據並構成了模型的基礎。有些特徵的權重比其他人更高,但每一個都幫助我們分 析灌籃的技術面: Player Vertical: Based on the mid-hip height when the player’s jumping foot leaves the ground versus their peak mid-hip height during the jump. 球員彈跳高度:根據球員起跳時單腳支撐腳離地的髖部中點高度,與起跳過程中達到的髖部 中點最高高度差值計算。 Takeoff Distance: The distance from the hoop at the point of takeoff. If the player jumps from one foot, it’s measured from the jumping foot’s big toe. If the player jumps from two feet, it’s measured from the midpoint between the big toes. 起跳距離:從起跳點到籃筐的距離。如果球員單腳起跳,測量自起跳腳的大拇趾;如果雙腳 起跳,測量腳大拇趾中點。 Hang Time: How long the dunker is airborne. 滯空時間:灌籃者在空中的總時間。 Maximum Ball Height: The peak height of the center of the ball during the dunk. 最高球高度:灌籃過程中籃球中心的最高高度。 Reach Back Distance: The furthest distance between the player’s head and the ball as it is pulled back from the hoop. 回拉距離:球員頭部與籃球在向後拉時的最大距離。 Ball Speed Through the Rim: How fast the ball is moving as it passes through the rim. 球速:籃球穿過籃筐時的移動速度。 Total Ball Acceleration: The total acceleration of the ball toward the hoop, accounting for the force the player applies during the dunk. 球的總加速度:籃球向籃筐移動的總加速度,包含球員灌籃過程中施加的力量。 Ball Movement: The distance the ball travels over the course of the dunk, minus the takeoff distance. This captures many flashy motions often performed during dunks: Windmill, Double Clutch, Behind the back, etc. 球移動距離:籃球在灌籃過程中的總移動距離,減去起跳距離。此特徵捕捉了灌籃中的花式 動作,如大車輪、拉桿、背後換手等。 Not all features are continuous — some are boolean (true or false) features that focus on specific stylistic elements, including: 而不是所有特徵都是連續性的--有一些是布林(T&F)特徵,而這些特徵專注於一些特定的風 格元素,而這其中包含了: Reverse Dunk 倒灌 360 Dunk 360度灌籃 Through the Legs 胯下換手 Alley-oop and Self-Oop: The score is adjusted based on the length of the pass, where the ball is caught, and whether the player catches the ball with one or two hands. 空中接力與自拋自灌:根據傳球距離、接球位置,以及球員是單手還是雙手接球調整分數。 Tip Dunk: Scaled higher based on how aggressively the player contests for the rebound versus simply being in the right place for an easy tip-in. 補灌:根據球員爭搶籃板的激烈程度提高分數,而非僅僅因站在合適位置完成補灌。 The Impact of Defense Defensive factors are treated as unweighted bonus points beyond the base score. This way, the lack of a defender doesn’t penalize a dunk, but great defense can elevate its difficulty and the overall score. Multiple defenders' contributions are additive, but each defender’s influence diminishes with every additional body in the mix. Key defensive features include: 防守因子則被作為基礎分數以外(灌籃本身)額外的加分。這樣的話,即使前方沒有防守者 ,灌籃者也不會因此被扣分,但好的防守可以因為增加其難度而使其獲得總分的增加。多 名防守者的貢獻是可以疊加的,但每多一位防守者,個別防守者的貢獻將減少。以下是主 要的防守特徵: Defensive Contest Level: A combined measure of (1) how close the defender’s body is to the dunker and how directly they are positioned between the dunker and the hoop, and (2) how close the defender’s hand is to the ball, with slight weighting towards the ball-hand-rim angle. If the defender is under or beyond the hoop, they are penalized. 防守干擾等級:綜合評估(1)防守者與灌籃者身體的距離及其在灌籃者和籃筐之間的直接位 置,以及(2)防守者的手與籃球的距離,並在手-球-籃筐角度上增加權重。如果防守者站在 籃筐下方或更遠的位置,他們將被扣分。 Alignment Score: Measures how directly the dunker and defender are facing each other, using dot products of their direction vectors and scaled by distance. A chest-to-chest contest would result in a perfect 1.0 alignment score. 對位分數:測量灌籃者和防守者的直接對位程度,通過他們方向向量的點積計算,並按距離 縮放。面對面的防守會產生完美的1.0對位得分。 Collision Score: Measures the intensity of contact between the dunker and the defender. It evaluates the sum of their velocity components toward each other, scaled inversely by the distance between them. Two players in very close proximity moving directly at each other at high speeds would have a high collision score. 碰撞分數:衡量灌籃者與防守者之間接觸的強度。此分數通過兩人相向移動速度分量的總和 計算,並按距離的反比縮放。兩位球員非常接近且高速向對方移動時,將得到高碰撞分數 。 The model also detects situations where a defender attempts to take a charge or when the dunker jumps over the defender. In these cases, special logic is used to focus on 2D body-based features rather than hand-based features. 模型同時還可以偵測防守者是試圖製造進攻犯規還是灌籃者真的飛過了防守者。在這些情 況會採用特殊的邏輯更加重視基於身體的2D特徵,而非手部特徵。 Overall Scoring Distributions Below is a histogram representing the overall distribution of the Dunk Score for all dunks from the 2023-24 NBA season. Most dunks land somewhere in the 20-50 range. It’s a right-skewed distribution, meaning only a select few make it into the upper echelon. 底下是2023-24 NBA 球季所有灌籃的灌籃得分分布直方圖。大多數灌籃的得分範圍介於 20 到 50 分之間。這是一個右偏分布,意味著只有少數灌籃進入了頂尖行列。 https://i.imgur.com/tL4Re45.jpeg
(最右邊那個理論上是Anthony Edwards去年在John Collins頭上灌的那球) NBA灌籃分數系統將於2024-25賽季Beta版正式推出。這是一種突破性的分析方式,專注於 籃球運動中最令人興奮的表現之一。通過分析球員動作、防守壓力以及飛行物理,灌籃現 在可以被以客觀的精確性進行比較。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 104.176.138.216 (美國) ※ 文章網址: https://www.ptt.cc/bbs/NBA/M.1731658964.A.941.html

11/15 16:26, 4小時前 , 1F
今天有一篇Po文說歐肥的灌籃害比賽變難看?!
11/15 16:26, 1F
歐肥的分數在這個評分機制下還真的不高

11/15 16:26, 4小時前 , 2F
這會用到灌籃大賽上嗎
11/15 16:26, 2F
我猜會 但是評審作為噱頭之一應該還是評分的主要

11/15 16:26, 4小時前 , 3F
這個也有Po在官方IG CC被扣那球一直被鞭
11/15 16:26, 3F

11/15 16:26, 4小時前 , 4F
最高9分
11/15 16:26, 4F

11/15 16:27, 4小時前 , 5F
Ja:我準備好刷榜了
11/15 16:27, 5F

11/15 16:29, 4小時前 , 6F
AE很多誇張灌籃,之前灌渡邊那球也很扯
11/15 16:29, 6F

11/15 16:29, 4小時前 , 7F
9分
11/15 16:29, 7F

11/15 16:30, 4小時前 , 8F
沒有加入WADE的想法我是不認的
11/15 16:30, 8F

11/15 16:31, 4小時前 , 9F
總覺得斑馬灌籃分數會很低 彈跳高度只有一塊豆腐高
11/15 16:31, 9F

11/15 16:32, 4小時前 , 10F
(其實有點不新了)XD
11/15 16:32, 10F

11/15 16:32, 4小時前 , 11F
伸手墊腳就能灌
11/15 16:32, 11F
他其他Metric應該不會太醜 但肯定是很難勝過AE那種體能怪物 ※ 編輯: EZ78 (104.176.138.216 美國), 11/15/2024 16:35:54

11/15 16:36, 4小時前 , 12F
只能9分不能再高了
11/15 16:36, 12F

11/15 16:42, 4小時前 , 13F
9
11/15 16:42, 13F

11/15 16:43, 4小時前 , 14F
最高9分
11/15 16:43, 14F

11/15 16:46, 4小時前 , 15F
小丑分數大概超低吧…
11/15 16:46, 15F

11/15 16:46, 4小時前 , 16F
施加力量這項沒人贏的了歐肥吧
11/15 16:46, 16F
https://reurl.cc/gekreL 今天最接近O'Neal大部分型態的可能就這球 只有50分左右

11/15 16:47, 4小時前 , 17F
有問過最頂的灌籃評審九尾意見嗎
11/15 16:47, 17F
※ 編輯: EZ78 (104.176.138.216 美國), 11/15/2024 16:49:32

11/15 16:49, 4小時前 , 18F
超過9芬都是AI誤判
11/15 16:49, 18F

11/15 16:49, 4小時前 , 19F
*分
11/15 16:49, 19F

11/15 16:54, 4小時前 , 20F
沒哦 施加力量歐肥分數應該不高 因為看的不是灌籃
11/15 16:54, 20F

11/15 16:54, 4小時前 , 21F
者施加於球框的力量 而是球往籃框的移動速度 所以
11/15 16:54, 21F

11/15 16:54, 4小時前 , 22F
詹皇或vc這種擅長大戰斧在這項的分數才會是最猛的
11/15 16:54, 22F

11/15 17:02, 3小時前 , 23F
有辦法查得到歷史的分數嗎
11/15 17:02, 23F
現在還在測試階段 可能暫時只會有當天的吧 但之後應該有機會可以看本季以後的 ※ 編輯: EZ78 (104.176.138.216 美國), 11/15/2024 17:04:16

11/15 17:05, 3小時前 , 24F
想說我按了10分鐘Nba Stats真的找不到XD
11/15 17:05, 24F

11/15 17:22, 3小時前 , 25F
他施加力量的分數要是有考慮籃框炸裂或是支架彎曲
11/15 17:22, 25F

11/15 17:23, 3小時前 , 26F
等硬體設備被破壞的狀況,那歐肥的分數才會比較好看
11/15 17:23, 26F

11/15 17:32, 3小時前 , 27F
想看VC生涯那些經典灌籃有幾分
11/15 17:32, 27F

11/15 17:33, 3小時前 , 28F
那個有點難 沒有數據 可能只會有本季以後的
11/15 17:33, 28F

11/15 17:34, 3小時前 , 29F
吃飽太閒喔…
11/15 17:34, 29F

11/15 17:38, 3小時前 , 30F
VC生錯時代
11/15 17:38, 30F

11/15 17:44, 3小時前 , 31F
vc奧運那球應該有200分
11/15 17:44, 31F

11/15 17:46, 3小時前 , 32F
好想看18年Lebron灌Nukic那球
11/15 17:46, 32F

11/15 17:48, 3小時前 , 33F
好奇去年老詹扣PG那球的分數
11/15 17:48, 33F

11/15 17:50, 3小時前 , 34F
D.Wade: 9
11/15 17:50, 34F

11/15 18:01, 2小時前 , 35F
看來老羌還不能退休 又有新目標了
11/15 18:01, 35F

11/15 18:09, 2小時前 , 36F
有啥生錯年代的問題 這就只是純娛樂的數據而已
11/15 18:09, 36F

11/15 18:17, 2小時前 , 37F
不是有那種測顏值的APP 你覺得金城武 金泰亨要測嗎
11/15 18:17, 37F
文章代碼(AID): #1dDmJKb1 (NBA)
文章代碼(AID): #1dDmJKb1 (NBA)